Overview on **Transverse Momentum Dependent Distribution and Fragmentation Functions**

M. Boglione

tituto Nazionale i Fisica Nucleare

DI TORINC ALMA UNIVERSITAS

TAURINENSIS

Deep Inelastic Scattering

- The nucleon has an internal structure
- x is the fraction of proton momentum carried by the parton
- The cross section is the incoherent sum of all partonic contributions convoluted with the parton distribution function, which only depends on x at LO

Q² Evolution

QCD corrections induce Q² dependence

 $f(x) \rightarrow f(x,Q^2)$

DGLAP evolution equations exactly predict this Q² dependence

Parton distribution functions

Unpolarized distribution functions

 $q = q_{+}^{+} + q_{-}^{+}$ $g = g_{+}^{+} + g_{-}^{+}$

f_{q/p}(x)

Helicity distribution functions $\Delta q = q_{+}^{+} - q_{-}^{+}$ $\Delta g = g_{+}^{+} - g_{-}^{+}$ Transversity distribution functions

 $\Delta f_{q\uparrow/p\uparrow}(x)$

$$\Delta_{ au} \boldsymbol{q} = \boldsymbol{q}^{\uparrow}_{\uparrow} - \boldsymbol{q}^{\uparrow}_{\downarrow}$$

Correlator

D.E. Soper, Phys. Rev. D 15 (1977) 1141; Phys. Rev. Lett. 43 (1979) 1847; J.C. Collins and D.E. Soper, Nucl. Phys. B194 (1982) 445; R.L. Jaffe, Nucl. Phys. B 229 (1983) 205.

$$\Phi_{ij}(k;P,S) = \sum_{X} \int \frac{\mathrm{d}^{3} P_{X}}{(2\pi)^{3} 2E_{X}} (2\pi)^{4} \delta^{4} (P-k-P_{X}) \langle PS | \overline{\Psi}_{j}(0) | X \rangle \langle X | \Psi_{i}(0) | PS \rangle$$

$$= \int \mathrm{d}^{4} \xi \, e^{ik \cdot \xi} \langle PS | \overline{\Psi}_{j}(0) \Psi_{i}(\xi) | PS \rangle$$

Parton distribution functions

Very good knowledge of unpolarized distribution functions, q(x,Q²) and g(x,Q²)

Fairly good knowledge of longitudinally polarized, partonic distributions, Δq(x,Q²); poor knowledge of longitudinally polarized gluons Δg(x,Q²)

✤ NO direct information on transversely polarized partonic distributions, $\Delta_T q(x, Q^2)$, from DIS

Transversity

There is no gluon transversity distribution function

- Transversity cannot be studied in deep inelastic scattering because it is chirally odd
- Transversity can only appear in a cross-section convoluted to another chirally odd function

SIDIS

Intrinsic Transverse Momentum

Plenty of theoretical and experimental evidence for transverse motion of partons within nucleons, and of hadrons within fragmentation jets

Intrinsic Transverse Momentum

Distribution and fragmentation functions now depend

on the lightcone momentum fraction
 (x for the distributions and z for the fragmentations)

* on \mathbf{Q}^2 (\rightarrow pQCD evolution),

on the intrinsic transverse momentum of the partons,
 (k₁ for the distributions and p₁ for the fragmentations)

OPEN QUESTIONS:

How do TMD's depend on the intrinsic transverse momentum ?

- ✓ Gaussian behaviour in the central region ...
- ✓ Power law decrease at large transverse momentum...

\therefore Does the partonic intrinsic transverse momentum \mathbf{k}_{\perp} (\mathbf{p}_{\perp}) depend on x (z) ?

Leading twist TMD Correlator

Mulders and Tangermann, NP B461 (1996) 197, Boer and Mulders, PR D57 (1998) 5780

$$\begin{split} \Phi(x, \mathbf{k}_{\perp}) &= \frac{1}{2} \left[f_{1} \not h_{+} + f_{1T}^{\perp} \frac{\epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M} + \left(S_{L} (g_{1L}) + \frac{\mathbf{k}_{\perp} \cdot S_{T}}{M} (g_{1T}) \right) \gamma^{5} \not h_{+} \\ &+ \left(h_{1T} i \sigma_{\mu\nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu} + \left(S_{L} (h_{1L}^{\perp}) + \frac{\mathbf{k}_{\perp} \cdot S_{T}}{M} (h_{1T}^{\perp}) \right) \frac{i \sigma_{\mu\nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M} \\ &+ \left(h_{1}^{\perp} \frac{\sigma_{\mu\nu} k_{\perp}^{\mu} n_{+}^{\nu}}{M} \right] \end{split}$$

Transverse Mometum Dependent Distribution Functions

Transverse Mometum Dependent Distribution Functions

QUARK POLARIZATION

Courtesy of A. Bacchetta

- •Functions in bold face survive k integration
- •Functions in shaded cells are naïve T-odd
- •Functions in red box are chirally odd

General Formalism with Helicity Amplitudes

from general properties of helicity amplitudes:

$$\hat{\mathcal{F}}_{\lambda_{a},\lambda_{X_{A}};\lambda_{A}}(x_{a},\boldsymbol{k}_{\perp a}) = \mathcal{F}_{\lambda_{a},\lambda_{X_{A}};\lambda_{A}}(x_{a},\boldsymbol{k}_{\perp a}) e^{i\lambda_{A}\phi_{a}}$$
$$\hat{F}_{\lambda_{A},\lambda_{A}'}^{\lambda_{a},\lambda_{A}'}(x_{a},\boldsymbol{k}_{\perp a}) = F_{\lambda_{A},\lambda_{A}'}^{\lambda_{a},\lambda_{A}'}(x_{a},\boldsymbol{k}_{\perp a}) e^{(\lambda_{A}-\lambda_{A}')\phi_{a}}$$

and there are eight independent $F^{\lambda_a,\lambda_a'}_{\lambda_A,\lambda_A'}$		
$\underbrace{F_{++}^{++}, F_{}^{++}}_{\text{real}}, \underbrace{F_{+-}^{+-}, F_{+-}^{-+}}_{\text{real for quarks}}, \underbrace{F_{+-}^{++}, F_{++}^{+-}}_{\text{complex}}$		
$\hat{f}_{a/A}$	=	$\hat{f}_{a/A,S_L} = \left(F_{++}^{++} + F_{}^{++}\right)$
$\hat{f}_{a/A,S_T}$	=	$(F_{++}^{++} + F_{}^{++}) + 2 \operatorname{Im} F_{+-}^{++} \sin(\phi_{S_A} - \phi_a)$
$P_x^a \hat{f}_{a/A,S_L}$	=	$2\mathrm{Re}F_{++}^{+-}$
$P_x^a \hat{f}_{a/A,S_T}$	=	$(F_{+-}^{+-} + F_{+-}^{-+}) \cos(\phi_{S_A} - \phi_a)$
$P_y^a \hat{f}_{a/A,S_L}$	=	$P_{y\ a/A}^{a} = -2\mathrm{Im}F_{++}^{+-}$
$P_y^a \hat{f}_{a/A,S_T}$	=	$-2\mathrm{Im}F_{++}^{+-} + \left(F_{+-}^{+-} - F_{+-}^{-+}\right)\sin(\phi_{S_A} - \phi_a)$
$P_z^a \hat{f}_{a/A,S_L}$	=	$(F_{++}^{++} - F_{}^{++})$
$P_z^a \hat{f}_{a/A,S_T}$	=	$2\operatorname{Re}F_{+-}^{++}\cos(\phi_{S_A}-\phi_a)$

$$f_{1}(x_{a}, k_{\perp a}) = F_{++}^{++} + F_{--}^{++} = f_{a/A}$$

$$\frac{k_{\perp a}}{M} f_{1T}^{\perp}(x_{a}, k_{\perp a}) = -2 \operatorname{Im} F_{+-}^{++}$$

$$g_{1L}(x_{a}, k_{\perp a}) = F_{++}^{++} - F_{--}^{++}$$

$$\frac{k_{\perp a}}{M} g_{1T}^{\perp}(x_{a}, k_{\perp a}) = 2 \operatorname{Re} F_{+-}^{++}$$

$$\frac{k_{\perp a}}{M} h_{1L}^{\perp}(x_{a}, k_{\perp a}) = 2 \operatorname{Re} F_{++}^{+-}$$

$$\frac{k_{\perp a}}{M} h_{1L}^{\perp}(x_{a}, k_{\perp a}) = 2 \operatorname{Im} F_{++}^{+-}$$

$$h_{1}(x_{a}, k_{\perp a}) = F_{+-}^{+-}$$

$$\left(\frac{k_{\perp a}}{M}\right)^{2} h_{1T}^{\perp}(x_{a}, k_{\perp a}) = 2 F_{+-}^{-+}$$

General Formalism with Helicity Amplitudes

similar situation with fragmentation functions

$$\hat{D}_{\lambda_{c},\lambda_{c}^{\prime}}^{\lambda_{C},\lambda_{C}^{\prime}}(z,\boldsymbol{k}_{\perp C}) = \sum_{X;\lambda_{X}} \hat{\mathcal{D}}_{\lambda_{C},\lambda_{X};\lambda_{c}}(z,\boldsymbol{k}_{\perp C}) \hat{\mathcal{D}}_{\lambda_{C}^{\prime},\lambda_{X};\lambda_{c}^{\prime}}^{*}(z,\boldsymbol{k}_{\perp C})$$

 $\hat{\mathcal{D}}_{\lambda_C,\lambda_X;\lambda_c}$ helicity amplitude for the "process": $c \to C + X$

from general properties of helicity amplitudes:

 $\hat{\mathcal{D}}_{\lambda_C,\lambda_X;\lambda_c}(z,\boldsymbol{k}_{\perp C}) = \mathcal{D}_{\lambda_C,\lambda_X;\lambda_c}(z,\boldsymbol{k}_{\perp C}) e^{i\lambda_c\phi_C^H}$ $\hat{D}_{\lambda_c,\lambda_c'}^{\lambda_C,\lambda_c'}(z,\boldsymbol{k}_{\perp C}) = D_{\lambda_c,\lambda_c'}^{\lambda_C,\lambda_C'}(z,\boldsymbol{k}_{\perp C}) e^{i(\lambda_c-\lambda_c')\phi_C^H}$

Collins function (unpolarized final particles)

 $-2i D_{+-}^{C/q}(z,k_{\perp C}) = 2 \operatorname{Im} D_{+-}^{C/q}(z,k_{\perp C}) \equiv \Delta^N \hat{D}_{C/}(z,k_{\perp C})$

Transverse Mometum Dependent Distribution Functions

QUARK POLARIZATION

•Functions in bold face survive k₁ integration •Functions in shaded cells are naïve T-odd •Functions in red box are chirally odd

TMD in unpolarized SIDIS --> Cahn Effect

Azimuthal dependence induced by quark intrinsic motion

EMC data, µp and µd, E between 100 and 280 GeV

CLAS data, arXiv:0809.1153 [hep-ex]

W. Käfer, COMPASS collaboration, talk at Transversity 2008, Ferrara

Assume a simple, factorized form for the TMD distribution and fragmentation functions, with a gaussian dependence on the intrinsic transverse momentum

$$f_q(x,k_{\perp}) = f_q(x) \frac{1}{\pi \langle k_{\perp}^2 \rangle} e^{-k_{\perp}^2 / \langle k_{\perp}^2 \rangle}$$

$$D_q^h(z,p_{\perp}) = D_q^h(z) \frac{1}{\pi \langle p_{\perp}^2 \rangle} e^{-p_{\perp}^2 / \langle p_{\perp}^2 \rangle}$$

Determine the free parameters by fitting experimental data

 $\langle k_{\perp}^2 \rangle = 0.28 \; (\text{GeV})^2 \qquad \langle p_{\perp}^2 \rangle = 0.25 \; (\text{GeV})^2$

EMC data, µp and µd, E between 100 and 280 GeV

A $\cos\varphi$ dependence is also generated by Boer-Mulders \otimes Collins term, via a kinematical effect in $d\Delta\hat{\sigma}$, not included in this fit.

At $O(k_{\perp}^2/Q^2)$ further dependence on $\cos(2\phi)$ is generated

M.Anselmino, M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia and A. Prokudin

W. Käfer, COMPASS collaboration, talk at Transversity 2008, Ferrara

Comparison with

M. Anselmino, M. Boglione, A. Prokudin, C. Türk Eur. Phys. J. A 31, 373-381 (2007) does not include the Boer – Mulders contribution

P_T dependence of data in agreement with a Gaussian k_\perp dependence of unpolarized TMDs

CLAS data, arXiv:0809.1153 [hep-ex]

Hint of a z-dependence at small z values CLAS data, arXiv:0809.1153 [hep-ex]

No hint of x dependence in the explored region

solid line
$$\rightarrow \begin{cases} Gaussian TMD's with \langle k_{\perp}^2 \rangle = 0.25 \ \langle p_{\perp}^2 \rangle = 0.20 \\ \langle P_T^2 \rangle = z^2 \langle k_{\perp}^2 \rangle + \langle p_{\perp}^2 \rangle \quad \mathcal{O}(k_{\perp}/Q) \end{cases}$$

TMD's in polarized SIDIS

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} &= F_{UU} + \cos(2\phi) \, F_{UU}^{\cos(2\phi)} + \frac{1}{Q} \, \cos\phi \, F_{UU}^{\cos\phi} + \lambda \, \frac{1}{Q} \, \sin\phi \, F_{LU}^{\sin\phi} \\ &+ \, S_L \left\{ \sin(2\phi) \, F_{UL}^{\sin(2\phi)} + \frac{1}{Q} \, \sin\phi \, F_{UL}^{\sin\phi} + \lambda \left[F_{LL} + \frac{1}{Q} \, \cos\phi \, F_{LL}^{\cos\phi} \right] \right\} \\ &+ \, S_T \left\{ \sin(\phi - \phi_S) \, F_{UT}^{\sin(\phi - \phi_S)} + \sin(\phi + \phi_S) \, F_{UT}^{\sin(\phi + \phi_S)} + \sin(3\phi - \phi_S) \, F_{UT}^{\sin(3\phi - \phi_S)} \\ &+ \, \frac{1}{Q} \left[\sin(2\phi - \phi_S) \, F_{UT}^{\sin(2\phi - \phi_S)} + \sin\phi_S \, F_{UT}^{\sin\phi} \right] \\ &+ \, \lambda \left[\cos(\phi - \phi_S) \, F_{LT}^{\cos(\phi - \phi_S)} + \frac{1}{Q} \left(\cos\phi_S \, F_{LT}^{\cos\phi} + \cos(2\phi - \phi_S) \, F_{LT}^{\cos(2\phi - \phi_S)} \right) \right] \right\} \end{split}$$

 $F_{s_B s_T}^{(...)}$ contains the TMDs

- Studying Sivers, Collins and other mechanisms is complicated by the fact that all these effects mix and overlap in the polarized SIDIS cross section and azimuthal asymmetries
- Way out : build appropriately 'weighted' azimuthal asymmetries !

Kotzinian, **NP B441** (1995) 234,:Mulders and Tangermann, **NP B461** (1996) 197;Boer and Mulders, **PR D57** (1998) 5780, Bacchetta et al., **PL B595** (2004) 309, Bacchetta et al., **JHEP 0702** (2007) 093

TMD's in polarized SIDIS

$$\begin{split} F_{UU} &\sim \sum_{a} e_{a}^{2} f_{1}^{a} \otimes D_{1}^{a} & F_{LT}^{\cos(\phi-\phi_{S})} \sim \sum_{a} e_{a}^{2} g_{1T}^{\perp a} \otimes D_{1}^{a} \\ F_{LL} &\sim \sum_{a} e_{a}^{2} g_{1L}^{a} \otimes D_{1}^{a} & F_{UT}^{\sin(\phi-\phi_{S})} \sim \sum_{a} e_{a}^{2} f_{1T}^{\perp a} \otimes D_{1}^{a} \\ F_{UU}^{\cos(2\phi)} &\sim \sum_{a} e_{a}^{2} h_{1}^{\perp a} \otimes H_{1}^{\perp a} & F_{UT}^{\sin(\phi+\phi_{S})} \sim \sum_{a} e_{a}^{2} h_{1T}^{\perp a} \otimes H_{1}^{\perp a} \\ F_{UL}^{\sin(2\phi)} &\sim \sum_{a} e_{a}^{2} h_{1L}^{\perp a} \otimes H_{1}^{\perp a} & F_{UT}^{\sin(3\phi-\phi_{S})} \sim \sum_{a} e_{a}^{2} h_{1T}^{\perp a} \otimes H_{1}^{\perp a} \\ F_{UL}^{\sin(2\phi)} &\sim \sum_{a} e_{a}^{2} h_{1L}^{\perp a} \otimes H_{1}^{\perp a} & F_{UT}^{\sin(3\phi-\phi_{S})} \sim \sum_{a} e_{a}^{2} h_{1T}^{\perp a} \otimes H_{1}^{\perp a} \\ \frac{1}{Q} \cos \phi F_{UU}^{\cos \phi} &\sim f_{1}^{q} \otimes D_{1}^{q} \otimes d\hat{\sigma} + \left(h_{1}^{q\perp} \otimes H_{1}^{q\perp} \otimes d\Delta\hat{\sigma}\right) \\ \frac{1}{Q} \operatorname{Cahn} \operatorname{kinematical effects} \end{split}$$

(Avakian, Efremov, Schweitzer, Metz, Teckentrup, arXiv:0902.0689) M. Boglione

The Sivers Distribution Function

$$f_{q/p,S}(\boldsymbol{x},\boldsymbol{k}_{\perp}) = f_{q/p}(\boldsymbol{x},\boldsymbol{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\uparrow}}(\boldsymbol{x},\boldsymbol{k}_{\perp}) S \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

The Sivers function is related to the probability of finding an unpolarized quark inside a transversely polarized proton

$$= f_{q/p}(\mathbf{x}, \mathbf{k}_{\perp}) - \frac{\mathbf{k}_{\perp}}{M} f_{1T}^{\perp q}(\mathbf{x}, \mathbf{k}_{\perp}) S \cdot (\hat{\mathbf{p}} \times \hat{\mathbf{k}}_{\perp})$$

The Sivers function is T-odd

The Sivers function inbeds the correlation between the proton spin and the quark transverse momentum

The Boer-Mulders Distribution Function

The Collins Fragmentation Function

$$D_{h/q,s_q}(z, \boldsymbol{p}_{\perp}) = D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^N D_{h/q^{\uparrow}}(z, p_{\perp}) s_q \cdot (\hat{\boldsymbol{p}}_q \times \hat{\boldsymbol{p}}_{\perp})$$

The Collins function is related to the probability that a transversely polarized struck quark will fragment into a spinless hadron

$$= D_{h/q}(z, p_{\perp}) + \frac{p_{\perp}}{z M_h} H_1^{\perp q}(z, p_{\perp}) s_q \cdot (\hat{p}_q \times \hat{p}_{\perp})$$

The Collins function is chirally odd

The Collins function inbeds the correlation between the fragmenting quark spin and the transverse momentum of the produced hadron

Simultaneous determination of Transversity and Collins functions

We need to determine two convoluted unknown functions

- Fix one of the two functions according to some theoretical model and use SIDIS data to determine the other (see for example Efremov, Goeke, Schweitzer)
- Perform a simultaneous fit of SIDIS and $e+e^{-} \rightarrow h_1h_2X$ BELLE data.

Simultaneous determination of Transversity and Collins functions

M.A., M. Boglione, U. D'Alesio, A. Kotzinian, S. Melis, F. Murgia, A. Prokudin, C. Türk

Models for the Collins functions

Bacchetta, Gamberg, Goldstein, Mukherjee, Metz, Amrath, Schaefer, Yang, Brodsky, Schmidt, Hwang, Scopetta, Courtoy, Frattini, Vento

The last three TMD's ...

what about the last 3 TMDs? any relation with the others?

$$g_{1T}^{\perp(1)a}(x) \simeq x \int_x^1 \frac{\mathrm{d}y}{y} g_1^a(y)$$

 $h_{1L}^{\perp(1)a}(x) \simeq -x^2 \int_x^1 \frac{\mathrm{d}y}{y^2} h_1^a(y)$
 $h_{1T}^{\perp(1)a}(x) \simeq g_1^a(x) - h_1^a(x)$

neglecting twist-3 contributions

similar to the Wandzura-Wilczek relation

$$g_T^a(x) \simeq \int_x^1 \frac{\mathrm{d}y}{y} g_1^a(y)$$

supported by experiment

$$g_{1T}^{\perp(1)a}(x) = \int \mathrm{d}^2 m{k}_\perp \, rac{k_\perp^2}{2m_N^2} \, g_{1T}^{\perp a}(x,k_\perp^2)$$

for a recent model of all twist-2 TMDs see Bacchetta et al., arXiv:0807.0323

The last three TMD's ...

HERMES data, PRL 84 (2000) 4047; PL B562 (2003) 182

 $\sum e_a^2 h_{1L}^{\perp a} \otimes H_1^{\perp a}$ $F_{UL}^{\sin(2\phi)} \sim$

0.2

0.1

0

-0.1

-0.2 🗄

COMPASS data, arXiv:0705.2402

 $F_{_{UT}}^{\sin(3\phi-\phi_S)}\sim \sum e_a^2 \, h_{1T}^{\perp a} \otimes H_1^{\perp a}$

H. Avakian., A.V. Efremov, P. Schweitzer, F. Yuan \rightarrow Bag Model predictions arXiv:0805.3355 [hep-ph]

Pretzelosity

What do we know about it?

- in transversely polarized nucleon: measure of quark polarization \perp quark p_T Piet Mulders, Rick Tangerman 1995
- tells us deviation of nucleon shape from sphere Gerry Miller 2007 ('non-sphericity', 'pretzelosity') Matthias Burkardt 2007 ('pretzel', 'peanut', 'baggle')

• pretzelosity-relation in bag: $g_1^q(x,p_T) - h_1^q(x,p_T) = h_{1T}^{\perp(1)q}(x,p_T)$ Avakian, Efremov, PS, Yuan 2008

• also in spectator, light-cone constituent and covariant parton model Jakob et al 1997, Pasquini et al 2008, Efremov et al 2008

P. Schweitzer,, talk given at INT Program 09-3, Seattle

Spin-orbit correlations

Light-cone SU(6) quark-diquark model, Ma, Schmidt (1998)

also direct calculation. $h_{1T}^{\perp(1)q}(x) = -L^q(x)$

 $(-1) h_{1T}^{\perp(1)q}(x) dx =$ contribution of quark with $x \in [x, x + dx]$ to light-cone angular momentum

i.e. transverse moment of pretzelosity = direct measure of L^q !

P. Schweitzer,, talk given at INT Program 09-3, Seattle

Universality of Sivers and Collins functions

The Collins fragmentation function is universal (no initial/final state interactions, no effects induced by requiring color gauge invariance)

J. Collins and A. Metz, Phys. Rev. Lett. 93,252001 (2004), F. Yuan, arXiv:0903.4680

 The Sivers distribution function (naively time reversal odd) is subject to initial/final state interaction – color gauge invariance requirements induce color factors (process dependence).

C. J. Bomhof, P. J. Mulders, F. Pijlman, Eur. Phys. J. C 47, 147 (2006)

Example:

Angular dependence in the Collins-Soper frame

 $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}\left(1+\lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right)$

A. Prokudin, talk at Workshop on Transverse Spin Physics, Beijing (2008)

Present and future measurements ...

